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1. Introduction

Difficulties encountered with the semi-implicit version of the Shuman-
Hovermale model (Gerrity 1973) when orography was incorporated suggested
the possibility that linear computational instability might be associated
with the large variations of the specific volume on a a-coordinate surface
in the presence of mountains. Some numerical experiments with a free-
surface PE barotropic model with orography were undertaken in order to shed
light on the subject. In this note, a stability analysis of the barotropic
model is presented which supports the general stability of the semi-implicit
method but does indicate the existence of a conditional stability requirement;
viz., the "deviation" phase velocity-must not be large compared to the "mean"
phase velocity.

2. Analysis

Consider a one-dimensional free surface, barotropic model atmosphere with
a corrugated lower boundary of the fluid. The model equations may be written
as
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in which 4 is the geopotential of the free surface and 0o, a function of x
alone, is the geopotential of the lower boundary; u is the fluid velocity.
The Coriolis acceleration and advection have been omitted.

We assume that solutions to the equations are such that

(2)

Numerical solution'of the equations (1) may be obtained by the use of
finite difference approximations of the differential equations. We shall
consider the conditions under which stable numerical solutions of the semi-
implicit approximation of equations (1) may be obtained.

The finite difference equations are

a2t
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in which D is an arbitrary constant. The
indicates that these terms are implicitly
eq. (3b) is approximated explicitly.

bar-2t over the space derivatives
approximated. The last term in

In order to analyze the computational stability of the difference
equations (3), the problem will be reduced to a linear one with constant
coefficients. The explicitly approximated term in (3b) is nonlinear and
it is on this term that attention must be focused.

The first case to be examined is that in which ~o is zero.
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Following Richtmyer's (1962 cf. p. 6) interpretation of the stability
analysis problem, we shall consider the stability of a short wave within
a large scale wave. Thus, the nonlinear term will not be eliminated
completely; instead we write the system of equations

4C =-- +(4a)

A
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with the provision that 4 is constant.

Figure 1 illustrates the situation envisaged. Let us next assume that
the solutions to (4) may be obtained in the form,

L) ? (5)

where U and P are constants; ? is the amplification factor with n the
time index; j is the space grid index, Ax the space increment and k the
wave number.

Introduction of (5) into (4) yields

(6)

A 
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The wave number k absorbs the spatial truncation error.

Solutions of the form (6) will therefore exist only if C satisfies
the equation

¢+ ZR - 2 zQ + I = o +C
(8)

in which a
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The quartic eq. (8) may be factored into the product of the two
quadratics,

C

Inspection of the definition (9) shows that

(a) if the time step is chosen so that (A)X , to take full
advantage of the "absolute stability" of the implicit method, then

(b) if the time step is chosen so that t 1- , not fully
exploiting the "absolute stability" of the implicit method, then

In either case, the radicands in eq. (11) are positive and the
quadratics have real valued coefficients. The roots C are therefore
given by 
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Replacement of R and Q by m2 and Z2 gives

which is satisfied for all m provided that e ! 

Condition (20) is also satisfied if g2 > 1, thus the

%O = 0) is absolutely stable provided that
A

,
, i.e. Ta:A
system (3)

Conversely, if 
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then the magnitude of X will exceed unity. The inequality
certainly satisfied if Q > 2 or

fa4 Z
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(24) is -

Thus, if X C a there exists a condition on m, in order for the
system (3) to be computationally stable; viz.

7. <X , I 2. IL

Using (16) and (17) in (26) with the notation

A= Y A= 

C = V 

(25)

(26)

(27)

the condition on At becomes

A 2

eat < tC - 2 cJ (28)

Notice that as c +- 0 the condition (27) is weaker than the usual explicit
condition. This fact is due to the implicit approximation of eq. (3a) and
is related to the mixed implicit-explicit scheme reported earlier by
Shuman (1971) and Gerrity and McPherson (1971), and subsequently referred
to as the "time-averaged pressure gradient scheme."
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If the explicit term in eq.

demonstrate that

I%-1 -
provided that

- R I

(4b) is neglected, Q = 0, and one may

for k = 1, 2, 3, 4

(13)

We noted above that (13) will be satisfied for all choices of time step.
Consequently, one may conclude that the implicit system is absolutely
stable.

Sunnose now that
"Z A

and that the time step is taken to be

then (.4A)L Z. _ 

and A I
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(16)
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The choice m = vA will yield

(c4t), + = I (18)

the ordinary limit for computational stability of an explicit difference
approximation. If m is taken to be larger than VT, the explicit term
might cause the solution of eqs. (3) to be computationally unstable.

However, it is readily demonstrated that the roots
magnitude unity if IL

atQCO t±(IV ) I

(12) will have

<'

Provided that
(20)

the inequality (19) may be expressed as

Qol) 4 2 (l- )
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We have seen therefore that the scheme (3) can possess linearly unstable
solutions, but only if the coefficient of the explicit term in eq. (3b) is
more than twice as large as the coefficient of the implicit term in the same
equation.

Consideration of the case when %o is nonzero does not add appreciably
to the foregoing analysis unless one considers the unlikely situation of
flow over a very deep canyon.

In that situation, ~o can be large negative in the vicinity of the
depression, thereby giving rise to an instance in which the unstable
solution just analyzed may arise. We therefore concluded that to excite
a computational instability in the semi-implicit, free-surface barotropic
model, it is necessary to have

(a) r small compared with (4 - ~), and

^ 2
(b) kAt >]

3. Conclusion

Although it has been possible to demonstrate cases in which computational
instability may occur in a semi-implicit model, the event is associated only
with very large deviations. The difficulty experienced with the semi-
implicit baroclinic model may be partially due to this aspect of the
numerical technique, but it would be rash to draw that conclusion without
more relevant evidence than that deduced here.
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